
presents

Writing Good Code

Raymond Xu
raymondxu.io

Lucas Schuermann
lvs.io

Code Quality

Just because your code works doesn’t
make it good

High quality code is:
● correct
● efficient
● idiomatic
● readable
● maintainable

Code Style

Design Patterns

Testing

Code Style

Design Patterns

Testing

What is Code Style?

Code Style primarily discusses:
• Structure
• Naming
• Idioms

These don’t affect the behavior of your
program, but rather the static
organization

Why?

• Consistency
• Elegance
• Maintainability

Imagine you have just joined a new
team and want to familiarize yourself
with their codebase

Style Guides

A set of language-specific conventions
that should be followed when writing
code

Somewhat arbitrary

Consistency within a project is key

Google Java Style Guide
5.2.4 Constant names use CONSTANT_CASE: all
uppercase letters, with words separated by underscores.

// Constants
static final int NUMBER = 5;

static final ImmutableList<String> NAMES =
ImmutableList.of("Ed", "Ann");

static final Joiner COMMA_JOINER = Joiner.on(',');
// because Joiner is immutable static final

SomeMutableType[] EMPTY_ARRAY = {};

enum SomeEnum { ENUM_CONSTANT }

Airbnb JavaScript Style Guide

7.1 Use named function expressions instead of function
declarations.

// bad
const foo = function () { };

// bad
function foo() { }

// good
const foo = function bar() { };

Pep8 Python Style Guide
Write docstrings for all public modules, functions, classes,
and methods. Docstrings are not necessary for non-public
methods, but you should have a comment that describes
what the method does. This comment should appear after
the def line.

"""Return a foobang

Optional plotz says to frobnicate the bizbaz first.
"""

Comments

Don’t explain obvious things

Explain why, not what

Always document

Linters

Linters are tools that reinforce style
guides by pointing out all violations in
your code

Code -> Test -> Lint -> Code Review ->
Merge

Beyond Style

Many linters can also be used to check
for common coding errors, especially in
interpreted languages

This is called static analysis

Static Analysis

Particularly useful in dynamically typed
interpreted languages, such as Python

Linters can help catch static errors like
● Invalid typing, naming, importing
● Use of deprecated features
● Other general coding problems

Usually done by compilers (Java, C, C++)

Linting Example
What errors might be returned by linting this file?

import json

def f(x):
 y = x + 1

def g(y):
 return f(x)

Linting Example
Let’s test with pylint...

(...)
W: 4, 0: Bad indentation. Found 7 spaces, expected 4
W: 7, 0: Bad indentation. Found 1 spaces, expected 4
C: 1, 0: Missing module docstring (missing-docstring)
C: 3, 0: Invalid function name "f" (invalid-name)
C: 3, 0: Invalid argument name "x" (invalid-name)
C: 3, 0: Missing function docstring (missing-docstring)
C: 4, 7: Invalid variable name "y" (invalid-name)
W: 4, 7: Unused variable 'y' (unused-variable)
C: 6, 0: Invalid function name "g" (invalid-name)
C: 6, 0: Invalid argument name "y" (invalid-name)
C: 6, 0: Missing function docstring (missing-docstring)
E: 7,10: Undefined variable 'x' (undefined-variable)
W: 6, 6: Unused argument 'y' (unused-argument)
W: 1, 0: Unused import json (unused-import)

Linting Example
And with pep8...

dyn-160-39-171-190:swe-talk-materials Lucas$ pep8 lint.py
lint.py:3:1: E302 expected 2 blank lines, found 1
lint.py:3:4: E271 multiple spaces after keyword
lint.py:4:8: E111 indentation is not a multiple of four
lint.py:6:1: E302 expected 2 blank lines, found 1
lint.py:7:2: E111 indentation is not a multiple of four

Linter Tools Comparison

Pylint gives verbose output, includes
style warnings and coding errors

Pep8 gives (sometimes) shorter output,
includes just style problems

Is there a way to combine and give only
warnings/errors we care about?

Prospector
Prospector is a python linter that combines and
truncates the output of a number of tools (pylint,
pep8, etc.)

dyn-160-39-171-190:swe-talk-materials Lucas$ prospector
Messages
========

lint.py
 Line: 1
 pyflakes: F401 / 'json' imported but unused (col 1)
 Line: 4
 pyflakes: F841 / local variable 'y' is assigned to
but never used (col 8)
 Line: 7
 pyflakes: F821 / undefined name 'x' (col 11)

Takeaways

Read and follow style guides for your
favorite languages

Incorporate a linter into your
development workflow, especially when
static analysis is necessary

Seek mentorship and code review to
improve your intuition for clean code

Code Style

Design Patterns

Testing

What are Design Patterns?

General solutions to common software
design problems

May vary slightly from language to
language

Avoid anti-patterns!

Abstraction

Extracting physical implementation
from method signatures

Key to extensible software design

Builder Pattern

Used to separate the creation of a
complex object from its implementation

Provides more control over the steps of
an object’s construction, such as ease of
parameterization

Strategy Pattern

Used to create algorithms with
interchangeable components with
behavior defined at runtime

● Define a family of algorithms
● Encapsulate each algorithm
● Interchange algorithms within the

family

Algorithm varies with clients that use it

Composite Pattern

Goal is to allow groups of objects to be
treated the same as individual objects

In general, algorithms operate on
composite objects (groups) that contain
multiple child objects

We can loop through all children and
perform a similar action

Model-View-Controller

More complex pattern used in user
interface design

Model: application logic and state
View: displayed to user
Controller: user interaction->updates
model

Useful in organizing complex
interactions between front/backend

Sample Code

https://github.com/cerrno/swe-talk-m
aterials

https://github.com/cerrno/swe-talk-materials
https://github.com/cerrno/swe-talk-materials
https://github.com/cerrno/swe-talk-materials

Design Documents

Before you begin writing any code, write
a design doc

Design docs are usually peer reviewed
before development begins

Identify major problems at the design
phase not the implementation phase

Takeaways

Design patterns are solutions to
common problems

Familiarize yourself with as many as you
can

Using a pattern is usually cleaner than a
custom solution, and more readable for
those working on your code in the
future

Code Style

Design Patterns

Testing

But I know my code works...

But I know my code works...

• How do you know it works?
• What do you mean by “it works”?
• Does it really work?
• If you change something does it still

work?
• How does everyone else know it

works?

Types of Tests

• Unit
• Integration
• End-to-end
• Regression
• Smoke
• Sanity
• Load

Unit Tests

A unit test is a function that you write to
test one small part of your project

Unit tests typically test a single case of a
single function

Use assertions to define whether a test
passes or not

Code Coverage

How much of your code is run by your
tests?

More code coverage yields more
confidence

How do you measure this?

Code Coverage

Function coverage
● Does the function get called?

Statement coverage
● Does every statement in the function get

executed?

Branch coverage
● Does every branch get executed?

Condition coverage
● Does every boolean subexpression evaluate

to both true and false?

Test Doubles

Test doubles enable isolation of
behavior and decoupled tests

What if the function you want to test
has many dependencies and calls other
functions?

Stubs

Stubs simply return a hardcoded value

void testTransferMoneyBadPass() {
Authenticator a = new Authenticator();
TransferUtil t = new TransferUtil(a);
String pass = “foo bar”;
when(a.validate(pass)).thenReturn(false);
assertFalse(t.transferMoney(from, to, pass));

}

// in TransferUtil’s transferMoney() function
if (!a.validate(pass)) {

return false;
} else {

// logic
}

Mocks

Mocks track and verify interactions

Authenticator mock; // created by mocking framework

void testTransferMoneyChecksPass() {
TransferUtil t = new TransferUtil(mock);
String pass = “foo bar”;
t.transferMoney(from, to, pass));
verify(mock.validate(pass), 1);

}

// in TransferUtil’s transferMoney() function
if (!a.validate(pass)) {

return false;
} else {

// logic
}

Fakes

Lightweight implementations for testing
only

e.g. using an in-memory database

Testing Frameworks

Testing frameworks provide an
organized and automated way to write
and run tests

Examples:
● Java

○ Junit
○ Mockito

● Python
○ unittest
○ nosetest

A Simple Test

Our function

def mean(xs):
 return sum(xs) / len(xs) - 1

Our test(s)

def test_mean():
 assert mean([1, 2, 3]) == 2.0
 assert mean([-1.5, 0, 1.5]) == 0

Automated Testing
Use nosetest to run all “test-like” scripts

dyn-160-39-171-190:swe-talk-materials Lucas$ nosetests
.F
===
FAIL: unit_test.test_mean

Traceback (most recent call last):
 File "/Library/Python/2.7/site-packages/nose/case.py",
line 197, in runTest
 (...)
 assert mean([1, 2, 3]) == 2.0
AssertionError

Ran 2 tests in 0.005s

FAILED (failures=1)

Continuous Integration

Developers working each on their own
copy of the codebase can quickly create
a number of merge conflicts

Continuous integration (CI) is a system
where code is integrated (merged) into
the master early and often

CI relies on unit tests which verify code
before it is integrated to ensure quality

Takeaways

Integrate automated testing
frameworks into your projects

Practice thinking up test cases for your
code and implementing them

Continuous integration is an example of
a workflow that requires frequent
testing-- a number of tools are popular
on github etc.

Code Style

Design Patterns

Testing

Putting It All Together

Create a design doc before writing code,
use design patterns as possible and
conforming to style standards

Lint and run well-designed,
high-coverage unit tests before
submitting pull requests for review

ALWAYS require independent review
before code goes live/into master

Resources

Clean Code

Effective Java

Pylint/Prospector Documentation

Nosetest Documentation

Travis CI Github Tutorials

presents

Writing Good Code

Raymond Xu
raymondxu.io

Lucas Schuermann
lvs.io

