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Dynamic Programming (DP) 

•  optimal substructure 
•  overlapping subproblems 



My DP Strategy 



1) Identify that the problem can be 
solved with a DP approach 

– Not every problem is DP obviously 
–  It might not be immediately apparent 

which problems are DP on the midterm 
– Familiarize yourself with common DP 

problem themes 



2) Determine the dimensions of the DP 
matrix 
  
– 1D, 2D, (3D?!, etc.) 
– Each dimension should be related to a 

variable in the problem 
– Have to think ahead to the next steps to 

figure this out, so these steps aren’t 
exactly sequential 

– Usually only a few options for 
dimensions 



3) Define what each entry in the DP 
matrix means and initialize it 
  
– Write out, for example, OPT[i] = the 

minimum cost it takes to reach hotel i from 
the start 

– This helps you ground your logic when 
you try and figure out the recurrence 

– Then initialize entries to their 
appropriate values 



4) Define how to compute the solution 
to the problem assuming you have 
filled out the DP matrix 
  
–  It might be just the value at an entry in 

your matrix, it might be the min/max 
over many entries 

– Usually not too much work to reach the 
solution after the matrix is filled 



5) Figure out the recurrence 
  
– Probably the hardest part of solving DP 

problems 
– Think about how the optimal solution at 

i can be produced using the previous 
optimal solutions 

– Usually requires comparisons of options 
and picking the min/max 

– Examples: look at just the previous OPT, 
look at all the previous OPTs, look at 
neighboring OPTs 



6) Determine the time and space 
complexity 
  
– Easy once you’ve gotten here 
– Space complexity is usually just the size 

of the matrix 
– Time complexity is also easy since you 

know that for each entry in the matrix 
you did some work to fill it in. So take the 
number of entries in the matrix and 
multiply that by the work done at each 
step 



7) Reconstruct the solution 
  
–  If asked for, you should be able to modify 

your algorithm so that you can 
reconstruct the instance that yields the 
optimal value 

– A common pattern is to store back-
pointers at each step to the step that you 
came from. Then, follow the pointers 
back from the solution entry to build the 
instance (linked list) 



8) Prove your algorithm is correct 
  
–  If you’ve figured out the recurrence and 

have convinced yourself that it’s correct, 
an inductive proof should be easy 



1)  Identify that the problem can be solved with a DP 
approach 

2)  Determine the dimensions of the DP matrix 
3)  Define what each entry in the DP matrix means 

and initialize it 
4)  Define how to compute the solution to the 

problem assuming you have filled out the DP 
matrix 

5)  Figure out the recurrence 
6)  Determine the time and space complexity 
7)  Reconstruct the solution 
8)  Prove your algorithm is correct 

 



How do I get 
better at DP? 



Practice Problems 



Problem 1: Rod Cutting 

(CLRS p360) 



Problem 1: Rod Cutting 



Problem 1: Rod Cutting 

•  Optimal substructure 
– after you’ve cut the rod, you can treat 

each of the two pieces as their own 
problems 

– the optimal revenue attainable for small 
lengths inform the optimal revenue 
attainable for larger lengths 

•  Basic recursive solution is O(2n) 
– repeats work 



Problem 1: Rod Cutting 

•  How do you get the solution after 
you’ve filled out the array? 

•  How much work do you do at each 
step? 

•  Time and space complexity? 



Problem 2: Coin Change 

•  Given an infinite supply of each of {c1, 
c2, ... , cm} valued coins, what is the 
minimum number of coins needed to make 
change for exactly V cents? 



Problem 2: Coin Change 

•  Given an infinite supply of each of {c1, 
c2, ... , cm} valued coins, what is the 
minimum number of coins needed to make 
change for exactly V cents? 

•  Greedy solution works for some cases 
(e.g. {25, 10, 5, 1}) 

•  DP solution required for generalized 
problem (e.g. {5, 4, 1}) 



Problem 2: Coin Change 

•  Make change for every value <= n, 
smallest to largest 

 
•  OPT[0] = 0 
•  OPT[n] = min(OPT[n – c] + 1) 
–  for all coins with value c <= n 



Problem 2: Coin Change 

•  Time complexity? 
•  Space complexity? 
•  Reconstruction? 



Problem 3: Unbounded Knapsack 

•  Given a knapsack with capacity W and a 
set of n items, each with a weight and 
value, what is the maximum value that 
can be stored in the knapsack? 

•  Assume all weights are nonnegative 
integers, and that you are allowed to take 
any number of each item (Unbounded 
Knapsack Problem) 



Problem 3: Unbounded Knapsack 

•  Use a DP array of length W + 1 

•  OPT[0] = 0 
•  OPT[n] = max(OPT[n – wi] + vi) for all 

wi <= n 

•  Solution is at OPT[W] 
•  O(nW) runtime 



Problem 4: 0-1 Knapsack 

•  Given a knapsack with capacity W and a 
set of n items, each with a weight and 
value, what is the maximum value that 
can be stored in the knapsack? 

•  Now you can only take 0 or 1 of each item 
(0-1 Knapsack Problem) 



Problem 4: 0-1 Knapsack 

•  Now we need a 2D DP matrix 
–  (n + 1) by (W + 1) 
 

•  OPT[0, w] = 0 
•  OPT[i, w] = OPT[i – 1, w] if wi > w 
•  OPT[i, w] = max(OPT[i – 1, w],  

            OPT[i – 1, w – wi] + vi) if wi <= w 
 
Solution is at OPT[n, W] 
O(nW) runtime 



DP Practice 

•  Review the slides 
•  Read the textbook 

•  Do problems from the practice session 
•  Do problems in the textbook 
•  Do problems online 

•  Spend time thinking about the 
problems, don’t just look up solutions 
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