
Analysis of Algorithms I
Midterm Review Session

3/4/17

Presented by Raymond Xu

Dynamic Programming (DP)

•  optimal substructure
•  overlapping subproblems

My DP Strategy

1) Identify that the problem can be
solved with a DP approach

– Not every problem is DP obviously
–  It might not be immediately apparent

which problems are DP on the midterm
– Familiarize yourself with common DP

problem themes

2) Determine the dimensions of the DP
matrix

– 1D, 2D, (3D?!, etc.)
– Each dimension should be related to a

variable in the problem
– Have to think ahead to the next steps to

figure this out, so these steps aren’t
exactly sequential

– Usually only a few options for
dimensions

3) Define what each entry in the DP
matrix means and initialize it

– Write out, for example, OPT[i] = the

minimum cost it takes to reach hotel i from
the start

– This helps you ground your logic when
you try and figure out the recurrence

– Then initialize entries to their
appropriate values

4) Define how to compute the solution
to the problem assuming you have
filled out the DP matrix

–  It might be just the value at an entry in

your matrix, it might be the min/max
over many entries

– Usually not too much work to reach the
solution after the matrix is filled

5) Figure out the recurrence

– Probably the hardest part of solving DP

problems
– Think about how the optimal solution at

i can be produced using the previous
optimal solutions

– Usually requires comparisons of options
and picking the min/max

– Examples: look at just the previous OPT,
look at all the previous OPTs, look at
neighboring OPTs

6) Determine the time and space
complexity

– Easy once you’ve gotten here
– Space complexity is usually just the size

of the matrix
– Time complexity is also easy since you

know that for each entry in the matrix
you did some work to fill it in. So take the
number of entries in the matrix and
multiply that by the work done at each
step

7) Reconstruct the solution

–  If asked for, you should be able to modify

your algorithm so that you can
reconstruct the instance that yields the
optimal value

– A common pattern is to store back-
pointers at each step to the step that you
came from. Then, follow the pointers
back from the solution entry to build the
instance (linked list)

8) Prove your algorithm is correct

–  If you’ve figured out the recurrence and

have convinced yourself that it’s correct,
an inductive proof should be easy

1)  Identify that the problem can be solved with a DP
approach

2)  Determine the dimensions of the DP matrix
3)  Define what each entry in the DP matrix means

and initialize it
4)  Define how to compute the solution to the

problem assuming you have filled out the DP
matrix

5)  Figure out the recurrence
6)  Determine the time and space complexity
7)  Reconstruct the solution
8)  Prove your algorithm is correct

How do I get
better at DP?

Practice Problems

Problem 1: Rod Cutting

(CLRS p360)

Problem 1: Rod Cutting

Problem 1: Rod Cutting

•  Optimal substructure
– after you’ve cut the rod, you can treat

each of the two pieces as their own
problems

– the optimal revenue attainable for small
lengths inform the optimal revenue
attainable for larger lengths

•  Basic recursive solution is O(2n)
– repeats work

Problem 1: Rod Cutting

•  How do you get the solution after
you’ve filled out the array?

•  How much work do you do at each
step?

•  Time and space complexity?

Problem 2: Coin Change

•  Given an infinite supply of each of {c1,
c2, ... , cm} valued coins, what is the
minimum number of coins needed to make
change for exactly V cents?

Problem 2: Coin Change

•  Given an infinite supply of each of {c1,
c2, ... , cm} valued coins, what is the
minimum number of coins needed to make
change for exactly V cents?

•  Greedy solution works for some cases
(e.g. {25, 10, 5, 1})

•  DP solution required for generalized
problem (e.g. {5, 4, 1})

Problem 2: Coin Change

•  Make change for every value <= n,
smallest to largest

•  OPT[0] = 0
•  OPT[n] = min(OPT[n – c] + 1)
–  for all coins with value c <= n

Problem 2: Coin Change

•  Time complexity?
•  Space complexity?
•  Reconstruction?

Problem 3: Unbounded Knapsack

•  Given a knapsack with capacity W and a
set of n items, each with a weight and
value, what is the maximum value that
can be stored in the knapsack?

•  Assume all weights are nonnegative
integers, and that you are allowed to take
any number of each item (Unbounded
Knapsack Problem)

Problem 3: Unbounded Knapsack

•  Use a DP array of length W + 1

•  OPT[0] = 0
•  OPT[n] = max(OPT[n – wi] + vi) for all

wi <= n

•  Solution is at OPT[W]
•  O(nW) runtime

Problem 4: 0-1 Knapsack

•  Given a knapsack with capacity W and a
set of n items, each with a weight and
value, what is the maximum value that
can be stored in the knapsack?

•  Now you can only take 0 or 1 of each item
(0-1 Knapsack Problem)

Problem 4: 0-1 Knapsack

•  Now we need a 2D DP matrix
–  (n + 1) by (W + 1)

•  OPT[0, w] = 0
•  OPT[i, w] = OPT[i – 1, w] if wi > w
•  OPT[i, w] = max(OPT[i – 1, w],

 OPT[i – 1, w – wi] + vi) if wi <= w

Solution is at OPT[n, W]
O(nW) runtime

DP Practice

•  Review the slides
•  Read the textbook

•  Do problems from the practice session
•  Do problems in the textbook
•  Do problems online

•  Spend time thinking about the
problems, don’t just look up solutions

Analysis of Algorithms I
Midterm Review Session

3/4/17

Presented by Raymond Xu

