
Data Structures
for Interviews

Raymond Xu
raymond@adicu.com

raymondxu.io

This Talk

Covers the most crucial and common
data structures in interviews

for each:
-Overview (what is it, what does it do)
-Methods (what can we do with it)
-Common Interview Themes

Assumes basic programming knowledge
-Java syntax

Outline

Big O

Data Structures

Other Interview Topics

Outline

Big O

Data Structures

Other Interview Topics

Big O

Big O describes asymptotic runtime as a
function of input size

Represents an upper bound

Smaller is better

Big O

O(1), O(logn), O(n), O(nlogn), O(n2),
O(2n), O(n!)

Drop constants and smaller
components

Big O is applied to both time and
space complexity

Big O

Big O

int sum(int[] arr) {
int sum = 0;
for (int i = 0; i < arr.length; i++) {

sum += arr[i];
}
return sum;

}

Big O

int sum(int[] arr) {
int sum = 0; // O(1)
for (int i = 0; i < arr.length; i++) { // n times

sum += arr[i]; // O(1)
}
return sum; // O(1)

}
// O(1) + n*(O(1)) + O(1) = O(n)

Big O

Know the runtime of all methods of all
common data structures and algorithms

Be able to analyze the time and space
complexity of functions

Big O informs the advantages and
disadvantages of different data
structures

Big O

Given a sorted array that has been
rotated, find the minimum element.

Big O

What’s faster than O(n)?

Big O

What’s faster than O(n)?

Is O(1) intuitively possible?

Big O

What’s faster than O(n)?

Is O(1) intuitively possible?

What does O(logn) entail?

Big O

Binary search!

Outline

Big O

Data Structures

Other Interview Topics

Arrays and Strings

Arrays are linear, sequential blocks of
memory

Strings are arrays of characters

Access elements by index in O(1)

Arrays and Strings

int[] arr = {1, 3, 5, 2, 6, 9};
System.out.println(arr.length); // 6
System.out.println(arr[3]); // 2

String str = “hello”;
System.out.println(str.length()); // 5
System.out.println(str.substring(1,3)); // “el”
System.out.println(str.charAt(0)); // ‘h’

Arrays and Strings

How do you recursively reverse a string?

Arrays and Strings

String reverse(String str) {
if (str == null || str.length() <= 1) {

return str;
}
return reverse(str.substring(1)) + str.charAt(0);

}

Arrays
-sums, searches, sorts

Strings
-reversal, palindromes, anagrams

Common Interview Themes

Linked Lists

Linked Lists are sequences of nodes

A node contains a value as well as a
pointer to one other node

Interviews commonly focus on
singly-linked lists but there are other
types as well

Linked Lists

Linked Lists

Questions specifically about linked lists
tend to deal with node manipulation

Define your own Node class (not Java’s
LinkedList)

Linked Lists

public class Node {
int value;
Node next;

}

public class LinkedList {
Node head;

}

Linked Lists

How do you find the middle node of a
linked list?

Linked Lists

Node getMiddleNode(Node head) {
Node slow = head;
Node fast = head;
while (fast != null && fast.next != null) {

fast = fast.next.next;
slow = slow.next;

}
return slow;

}

Implementing a method
e.g. insert, remove, reverse, etc.

Accessing a specific node’s data
e.g. middle, kth from end, cycle start

Merging/Sorting
e.g. merge 2 sorted linked lists

Common Interview Themes

Stacks and Queues

Stacks and Queues maintain a linear
ordering of elements based on insertion
order

Stacks: LIFO (Last In First Out)

Queues: FIFO (First In First Out)

Stacks and Queues

Stacks and Queues

Stack<Integer> s = new Stack<Integer>();
s.push(1);
s.push(5);
System.out.println(s.peek()); // 5
System.out.println(s.pop()); // 5
System.out.println(s.pop()); // 1
System.out.println(s.empty()); // true

// “Queue” in Java is an interface
Queue<Integer> q = new ArrayDeque<Integer>();
q.addLast(2);
q.addLast(3);
System.out.println(q.removeFirst()); // 2
System.out.println(q.removeFirst()); // 3

Stacks and Queues

Write a function to determine if a string
consisting of the characters '{', '}', '[', and
']' is balanced.

For example, "{[]}" is balanced, and "{[}]" is
not.

Stacks and Queues
boolean isBalanced(String str) {
 Stack<Character> stack = new Stack<Character>();
 for (int i = 0; i < str.length(); i++) {
 switch (str.charAt(i)) {
 case '{': stack.push('{');
 break;
 case '[': stack.push('[');
 break;
 case '}': if (stack.pop() != '{') { return false; }
 break;
 case ']': if (stack.pop() != '[') { return false; }
 break;
 }
 }
 return stack.isEmpty();
}

Implementation
-stack, queue, queue using 2 stacks

Utility data structure

Common Interview Themes

HashMaps and HashSets

HashMaps map keys to values
-also known as Hashtables or Dictionaries

HashSets store a set of elements

O(1) insertion, deletion, and lookup!

There are other types of Maps and Sets
too (check your language)

HashMaps and HashSets

Map<Integer, String> map = new HashMap<Integer, String>();

map.put(3, “triangle”);
map.put(4, “square”);
System.out.println(map.get(3)); // “triangle”
System.out.println(map.containsKey(4)); // true
System.out.println(map.containsValue(3)); // false

for (Integer i: map.keySet()) {
 System.out.println(i + “ : “ + map.get(i));
}

Set<String> set = new HashSet<String>();
set.add(“paypal”);
set.add(“venmo”);
System.out.println(set.contains(“paypal”)); // true
System.out.println(set.contains(“braintree”)); // false

Common Interview Themes

Almost always a utility data structure

Counting/Frequency/Histogram

Constructing mappings

Tracking seen elements

HashMaps and HashSets

Return the most frequently occurring
character in a string.

HashMaps and HashSets
Character findMostFrequentCharacter(String str) {

Map<Character, Integer> map = new HashMap<Character, Integer>();
for (int i = 0; i < str.length(); i++) {
 Character c = str.charAt(i);

if (map.containsKey(c)) {
 map.put(c, map.get(c) + 1);
}
else {
 map.put(c, 1);
}

}

int max = 0;
Character maxChar = null;
for (Character c: map.keySet()) {

if (map.get(c) > max) {
max = map.get(c);
maxChar = c;

}
}
return maxChar;

}

Trees

Trees store data in a hierarchical manner

A node has a value as well as multiple
pointers to other nodes

A tree stores a pointer to the root node

Many different types
-Binary: each node has up to 2 children

Trees
Terminology

Root – the top node in a tree
Parent – the converse notion of child
Siblings – nodes with the same parent
Descendant – a node reachable by repeatedly proceeding from
parent to child
Ancestor – a node reachable by repeatedly proceeding from child to
parent
Leaf – a node with no children
Edge – a connection between one node to another
Path – a sequence of nodes and edges connecting a node with a
descendant
Depth – the number of edges from the node to the root
Height – the largest number of edges from the node to a leaf

Trees
Terminology

A binary tree is balanced if and only if:
1. The left and right subtrees' heights

differ by at most one
2. The left and right subtrees are

balanced

Binary Search Trees

All nodes in the left subtree of a root
node have values that are smaller than
the root’s

All nodes in the right subtree of a root
node have values that are larger than the
root’s

Like Linked Lists, these questions
typically involve node manipulation

public class Node {
int value;
Node left;
Node right;

}

public class BinarySearchTree {
Node root;

}

Binary Search Trees

Binary Search Trees

Binary Search Trees

log(n) access, insertion, and removal
(if balanced)

Binary Search Trees

Write the insert function for a binary
search tree.

public void insert(int key) {
if (root == null) root = new Node(key);
else insert(root, key);

}

private Node insert(Node curr, int key) {
if (curr == null) {

return new Node(key);
}
if (key < curr.value) {

curr.left = insert(curr.left, key);
}
else if (key > curr.value) {

curr.right = insert(curr.right, key);
}
else {

return null;
}
return curr;

}

Binary Search Trees

Heaps
Also known as Priority Queues

Heaps provide fast access to the smallest
or largest value.

Min-heap: log(n) access to smallest value
Max-heap: log(n) access to largest value

Heaps are technically arrays, but it’s good
to think of them as complete binary trees

Heaps

In a min-heap, the value at any node is
smaller than both of its children’s values

In a max-heap, the value at any node is
larger than both of its children’s values

Heaps

Tries

Also known as Prefix Trees or Radix Trees

Tries store a set of strings

Each node stores a character, pointers to
other nodes, and a variable that indicates
whether the end of a word has been
reached

Tries

BST Methods
-insert, isValid, isBalanced, isSymmetric

Relationships
-print a path between 2 nodes, find LCA

Traversals
-pre-order, in-order, post-order,

level-order

Heaps and Tries are usually utility data
structures

Common Interview Themes

Graphs

A graph is a set of nodes and a set of
edges

Many types of graphs
-Directed or Undirected
-Weighted or Unweighted
-Connected or Unconnected

Graphs

Representations:
-Adjacency list
-Adjacency matrix

2D arrays are graphs too!

Graphs

public class Node {
public int value;
public ArrayList<Edges> edges;

}

public class Edge {
public Node destination;
public int weight;

}

public class Graph {
public ArrayList<Node> nodes;

}

Adjacency List

Graphs
Adjacency Matrix

Graphs

2 key algorithms:
-Breadth-first Search (BFS)
-Depth-first Search (DFS)

Good-to-know algorithms:
-Djiskstra’s
-Kruskal/Prim
-Topological Sort

Graphs

boolean BFS(Node root, Node dest) {
Queue<Node> q = new ArrayDeque<Node>();
q.addLast(root);
while (!q.isEmpty()) {

Node curr = q.removeFirst();
if (curr == dest) return true;
curr.visited = true;
for (Node n: curr.neighbors) {

if (!n.visited) {
q.addLast(n);

}
}

}
return false;

}

Breadth-first Search (BFS)

Graphs

boolean DFS(Node curr, Node dest) {
if (curr == dest) {

return true;
}
curr.visited = true;
for (Node n: curr.neighbors) {

if (!n.visited) {
 if (DFS(n, dest)) {
 return true;

}
}

}
return false;

}

Depth-first Search (DFS)

Graphs

Given a boolean 2D matrix, find the
number of islands.

{1, 1, 0, 0, 0},

{0, 1, 0, 0, 1},

{1, 0, 0, 1, 1},

{0, 0, 0, 0, 0},

{1, 0, 1, 0, 1},

d

Graphs

Solution: Apply a search

Typically the word “graph” won’t appear in
the problem statement (disguised
questions)

Translate the problem to a graph problem
(connectivity, cycles, partitions, etc)

Apply a search (usually)

Common Interview Themes

Rings of Knowledge

This is a lot of information! What
order should I study them in?

Ring 1 (Very common)

Big O
Arrays
Strings

HashMaps
HashSets

Ring 2 (Common)

Big O
Arrays
Strings

HashMaps
HashSets

Linked Lists
Binary Search Trees

Stacks, Queues

Ring 3 (Uncommon)

Big O
Arrays
Strings

HashMaps
HashSets

Linked Lists
Binary Search Trees

Stacks, Queues

Heaps
Tries

Graphs

Outline

Big O

Data Structures

Other Interview Topics

Other Topics

Data structures are the core of
technical interviews, but they
aren’t everything you need to

know!

Other Topics

Algorithms
-Sorting
-Divide and Conquer
-Greedy
-Dynamic Programming

Design/OOP
Language Knowledge
Discrete Math
Bits
Systems

Resources

Learning Data Structures:
-3134/3137 + textbook
-Wikipedia
-Cracking the Coding Interview (CTCI)

Practicing Questions:
-Leetcode
-GeeksForGeeks
-HackerRank
-CTCI

Practice!

Online

Friends

Whiteboard

Cookies and Code

Thanks for Coming!

Data Structures
for Interviews

Raymond Xu
raymond@adicu.com

raymondxu.io

